Toeplitz operators and weighted Bergman kernels

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toeplitz Operators and Weighted Bergman Kernels

For a smoothly bounded strictly pseudoconvex domain, we describe the boundary singularity of weighted Bergman kernels with respect to weights behaving like a power (possibly fractional) of a defining function, and, more generally, of the reproducing kernels of Sobolev spaces of holomorphic functions of any real order. This generalizes the classical result of Fefferman for the unweighted Bergman...

متن کامل

Hyponormal Toeplitz Operators on the Weighted Bergman Spaces

In this note we consider the hyponormality of Toeplitz operators Tφ on the Weighted Bergman space Aα(D) with symbol in the class of functions f + g with polynomials f and g of degree 2. Mathematics subject classification (2010): 47B20, 47B35.

متن کامل

The Commutants of Certain Toeplitz Operators on Weighted Bergman Spaces

For α > −1, let A2α be the corresponding weighted Bergman space of the unit ball in C. For a bounded measurable function f , let Tf be the Toeplitz operator with symbol f on A 2 α. This paper describes all the functions f for which Tf commutes with a given Tg, where g(z) = z1 1 · · · z Ln n for strictly positive integers L1, . . . , Ln, or g(z) = |z1| s1 · · · |zn| nh(|z|) for non-negative real...

متن کامل

Weighted Bergman Kernels and Quantization

Let Ω be a bounded pseudoconvex domain in C N , φ, ψ two positive functions on Ω such that − logψ,− log φ are plurisubharmonic, z ∈ Ω a point at which − log φ is smooth and strictly plurisubharmonic, and M a nonnegative integer. We show that as k → ∞, the Bergman kernels with respect to the weights φkψM have an asymptotic expansion KφkψM (x, y) = kN πNφ(x, y)kψ(x, y)M ∞ ∑ j=0 bj(x, y) k −j , b0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2008

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2008.06.026